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Here we consider the mean velocity profile in the core region of a unidirectional 
turbulent flow, that is, a flow in which the turbulent motion is superposed upon parallel 
time-averaged streamlines. A kinematical variational principle, originally developed 
for three-dimensional free-turbulent motions, is shown to be applicable to significant 
parts of the velocity profiles for flows of both Couette and Poiseuille types. In addition 
to pure plane Couette and pure plane Poiseuille flows, the motions considered include 
a variety of admixtures produced by blowing through a wide flat channel one of whose 
walls comprises a belt which moves either in the direction of the blowing or counter 
to it. 

1. Introduction 
Although unidirectional flows are the simplest to describe mathematically, their 

experimental realization is rather difficult. Test results for a considerable variety of 
such flows have been given by El Telbany & Reynolds (1980, 1981, 1982). The flows 
considered were established in a flat channel whose aspect ratio was changed between 
12 and 28 (this is the ratio of the channel dimensions in the y- and z-directions) and 
where one wall is a fixed plate, while the second is a belt which could be moved either 
in the direction in which air is blown through the channel or in the direction opposite 
to the blown air. In view of the high aspect ratios adopted, the motion in the central 
part of the channel can be taken to be approximately independent of the transverse 
coordinate z. The papers referred to present values of the intensities of the components 
of turbulence - 

for the x-, y- and z-directions, respectively, as well as the time-mean velocity U(y) ,  
where the coordinate y is measured from one of the walls bounding the flow. 

Here we are concerned mainly with the specification of the mean velocity U( y )  in the 
core region of this class of flows, that is, the region beyond the wall layers within which 
the velocity usually varies logarithmically. The actual generation of turbulence in this 
central region is small compared with that near the wall or the belt, and this suggests 
that the core flow might be similar in other ways to free-turbulent flow well away from 
a wall. 

- - 
U ' Y Y ) ,  u ' " 0 ,  w ' " 0  
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2. The variational principle 
For a three-dimensional stationary and incompressible flow, in which the local 

Reynolds number is high enough to justify the neglect of viscous stresses, the equation 
of motion for the ensemble average velocity field V can be written 

A. J .  Reynolds and K. Wieghardt 

where p is the constant density, and T is the volume force associated with the Reynolds 
stresses. The vorticity equation connecting second derivatives of the mean velocity with 
those of the Reynolds stresses is 

where L = Vx w with w = V.  

Extensive wind-tunnel measurements near the stern of double models of full ships 
(that is, ships with bluff sterns and a large wake), using laser-Doppler techniques and 
a grid mesh of 2 or 3 mm, have shown that in three-dimensional free turbulence 

V I r o t L  or V-rotL = 0 (2) 
even in regions with backflow (Wieghardt 1990, 1991 ; Knaack 1992). 

-rot L = rot T/p, (1) 

Seeking a quantity for which a variational principle can be set down, we define 

The experimentally determined result for three-dimensional flows (that is, equation 
(2)) implies that V -  A = 0, since V. V = 0. This result is trivial only for flows that are 
confined to one or two dimensions. However, even in those cases the application of the 
other basic vector operator, to obtain rot A ,  in general gives a non-zero result. 

As a next step, an attempt was made to see whether at least the integral of (rot A)2 
becomes a minimum in a region of free turbulence. This leads to a variational principle : 

A = vx L = ( V - m )  v- V2w. (3) 

Z = l l / ( rot  A)' dx dy dz + minimum (4) 

with the Eulerian equation 

rot rot rot A = rotlIIA = 0. 
Since this is a differential equation of the fourth order (for V), numerous solutions 

for the mean velocity distribution can be obtained. For example, any potential flow 
with A = 0 could be superposed, provided that it complies with the boundary 
conditions at the edge of the region of free turbulence. 

Furthermore, to check the validity of this principle, one has to know the measured 
velocity field very precisely. A similar situation arose in connection with the law for the 
outer region of two-dimensional boundary layers. At first the flow was taken to be 
almost one-dimensional (Wieghardt 1990), provided that the pressure gradient was not 
too large. Subsequently (Wieghardt 199 l), the linear increase of the angle between 
streamlines and the wall was approximated by a locally radial flow. When this was 
done, all the boundary layers considered by Coles & Hirst (1968) - even those nearest 
separation in plane and axial diffusers - were found to be consistent with the Eulerian 
condition (5) .  

In the unidirectional flows considered here, A becomes simply U'U,. Omitting a 
factor of 3 for simplicity, we obtain 

( 5 )  

A = (U"),. (6) 



Another look at unidirectionalPow 77 

I .o 

0.8 

0.6 

fi 
ub 

0.4 

0.2 

0 
' 9 18 21 36 45 

Y (mm) 

FIGURE 1. Couette-type flows: mean velocity (Ub-  U ) ,  as seen from the belt, scaled with belt 
velocity U,, us. distance y from the wall. For symbols, see table 1 .  

In this case the Eulerian equation is 

(u3)yyyy = 0, 

u = [a + pY + yy + sy311/3. 

which yields the solution 

In the 'free turbulence' core region, defined by y1 d y d y z ,  the integral result (4) 
now reduces to 

I = 1; [( U3),,I2 dy = 4[y2y + 3$y2 + 362y3]:; +minimum. (9) 
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FIGURE 2. Local Reynolds number W C  = T , / T ,  us. distance y from the wall, for four Couette-type 
flows (with 2h = 66 mm) and two pure Poiseuille-type flows (with 2h = 44 or 66 mm). 

In particular, for y = 6 = 0 this integral takes on the value zero, and within the core 
region the relationship between U 3  and y is then given by a straight line. 

3. Remarks on unidirectional flows 
Some non-dimensionalized Couette-type velocity profiles ( U/U,, with U, > 0 the 

belt velocity) are shown in figure 1, as seen from the fixed wall or the belt, for various 
ratios h = u , ~ / u , ~  between 0.2 and 5 .  Here u , ~  and u,, are the friction velocities 
defined, respectively, using the wall stress at the fixed wall and the wall stress at the 
moving wall formed by the belt. Each test case gives two profiles: U,(y) /U,  and 
[ U, - U2(2h - y ) ] /  U,  with 2h the channel breadth. A reflection of one profile about the 
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FIGURE 3. Couette-type flows: mean velocity V ( y )  over local friction velocity u,(y) us. non- 
dimensional distance u,y/v, with y measured from the wall or from the moving belt (when it is 
replaced by 66-ymm). Viscosity is taken to be 0.1486 cm* s-l. For symbols, see table I. 

centreplane y = h = 33 mm, followed by a second reflection about U / U b  = 0.5, 
produces the second profile. For example, the highest profile (Case 6, seen from 
the belt) gives an average velocity U,,, = 6.71 m s-', yet the lowest profile (Case 6 
measured from the fixed wall) gives the average 

U,,, = Ub-Ul, ,  = 8.59-6.71 = 1.88 m s-l. 
Hence the conventional Reynolds number can be calculated as either 

Re, = Ul,,2h/v = 29000 or Re, = U,,,2h/v = 8350. 
To define a flow of this kind, one has to know the belt velocity, and also the shear 
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FIGURE 4. Couette-type flow of figure 3 : U/u,  vs. distance y and (U,  - U ) / u ,  us. (66 - y mm). 
In the top left-hand corner are shown three viscous sublayers. 

stresses at the fixed and moving walls, u , ~  and u * ~  (not merely their ratio) which 
incorporate the effect of blowing through the channel. 

On the other hand, in unidirectional flow the total shear stress is known through the 
flow, since it varies linearly with the coordinate y measured normal to the flow. We can 
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103 x (U")/U; Core region 
u* 

Symbol Case (m s-l) h = n 
3.370y+682.2 ': 6.339y+291.9 
6.643y+98.67 
3.215y+645.0 

3.958 5.415y+246.4 
5 .077~ + 74.08 
4.383y+542.6 

(0.431/0.1089) 

5.992y+ 127.5 2.935 

(0.383/0.1305) [ 4.576y+4.449 
3.920y+501.0 
4.685y+97.68 

2.142 

3.154y+462.9 

(0.357/0.1667) 

r: 3.072~ + 81.92 
1.408 

1 .669~ + 4.623 
3.522y+383.8 

(0.328/0.233) 

2 .646~ + 38.70 
1 

3.384y+322.0 

(0.252/0.252) 

1.757y+23.99 0.710 

15 0.5418~-2.107 
(0.233/0.328) 

4.106y+2.339 15 < y  < 39 ': 1.45ly+2.859 0.467 

(0'1667/0'357) 15 0.2907~-2.565 
5.270y+ 141.3 
1.124~-6.444 

(0'1305/0'383) 15 0.1404~- 1.675 
3.258y+ 140.1 

0.45961,-0.1981 0.253 
(0.1089/0.431) k 0.2865~- 1.322 0.196 

15 0.01475y-0.1703 15 < y < 33 (0.061 5/0.3 13) 

21 < y < 45 5.089 
(0.313/0.0615) 

Y 6b  8.50 

21 < y < 45 
i 5  

i 5  

X 20 12.84 

18 < y < 42 d 5b  12.84 

21 < y < 45 4 4 b  12.84 

3.128~-1.329 
21 < y < 45 

' I 5  

i 5  

i 5  

0 2 12.84 

21 < y < 45 a 1 12.84 

1.1 12y -4.522 
18 < y < 42 d 2b  12.84 

+ 4 12.84 

12 < y < 36 0.341 0 5 12.84 

12 < y < 36 2 20b 12.84 

0.03729~ - 0.33 19 
0 6 8.59 3.764y+83.29 9 < y < 3 3  

Notes: (i) Case 20 ( x ) related to the belt is labelled Case 20 b ( x ). (ii) is friction velocity at  y = 0; 
u*66 is at y = 2h = 66 mm. (iii) Best-fit lines apply in the core region; see equation (13) for notation. 

TABLE 1. Characteristics of Couette-type flows, related to the fixed wall 

define a local friction velocity in terms of the local shear stress and relate it to the 
friction velocities for the two walls: 

with y measured from the fixed wall. This total stress has laminar and turbulent 
components : 

and this suggests that a local Reynolds number can be defined as 

Examples of the variation of 2 e  ( y )  are given in figure 2.  For the Couette-type flows 
that are considered, the two profiles of each test give the same variation, but reflected 
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FIGURE 5. Ratio T t / k  of turbulent mixing stress to turbulence kinetic energy. 
See table 1 for case numbers. 

in the centre plane. The maximum value We,,, is almost the same, close to 130, for the 
several tests. The reason for this behaviour may be that the average value 

(u,2)av = X4f + u",) 

varies only a little from flow to flow. Note that this average is closely related to the 
'effective' friction velocity that was introduced by El Telbany & Reynolds (1981): 

u, = + u",)'/2 = (2u,2)? 
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The average value of 8 e  depends, of course, on the conventional Reynolds number 
and on the flow type. Considering, for example, Case 1 of figure 2 (pure Couette flow), 
we have Bea = 87.5, while the conventional Reynolds number based on channel half- 
width h and centreline velocity U, is Re, = U,h/v = 14260. Thus we obtain 
Re,/8ea = 163. For all four cases of pure Couette flow that have been considered (with 
Re = 9500 to 19000) this ratio is 

ReJBe,  = 164 k 5 YO. 

On the other hand, for pure Poiseuille flow, the ratio is 423 k 5 %. 
Since the local value of u, is known for the 'simple' flows considered here, one might 

seek to extend the range of applicability of the law of the wall, for both fixed and 
moving walls. For Couette-type flows the results are shown in figures 3 and 4, with 
values of the parameter h between 5 and 0.2. Further details are given in table 1. It is 
mainly near the walls (fixed or moving) when h < 1 that the modified law of the wall 
differs from the conventional form, in which the friction velocity is assigned the fixed 
value pertaining at the adjacent wall. This is because the change in the local friction 
velocity is much greater in such cases. The velocity profiles of figure 4 also differ much 
more when h < 1 than when h > 1, and a core region appears, with U/u,  virtually 
constant. However, for the side where h 3 1 the conventional law of the wall provides 
an adequate representation. 

The presentation in figure 5 of results given in El Telbany & Reynolds (1981, 1982) 
may be useful in improving current models of turbulence. It shows the relationship 
between the turbulent stress (7, = - p m )  and the turbulence energy defined as usual by 

k = - ( -  u" + - v" +P) per unit volume. 

For pure Couette flow, Schneider (1989) has already proposed a more general 
diffusion mechanism for Reynolds stresses. Note that the distribution obtained is 
nearly the same for all S-shaped profiles of mean velocity. (The deviation of the points 
at y = 9 to 15 mm in Case 6 may be due to the extremely thick viscous sub-layer shown 
in figure 4.) 

For pure Poiseuille flow and other U-shaped velocity distributions within which the 
direction of the turbulent stress changes, a considerable variety of distributions is to be 
seen in figure 5. 

4. Couette-type or S-shaped velocity profiles 
In any S-shaped curve there must, of course, be a region near the point of inflexion 

where the curve is nearly linear. However, it is remarkable that in figure 1 all of the 
plots of U/Ub vs. y display quasi-linear regions that extend over nine measured values, 
and thus indicate a core region whose width is just over one third that of the channel. 
On the other hand, the simplest solution consistent with the variational principle would 
be a linear variation of U 3 ( y ) ,  as shown earlier. The plots of figure 6 confirm this 
prediction as well, for the central part of the channel. 

The best linear fit was calculated for each of the profiles (U/Ub)", for n = 1,3 and 5; 
the results are given in table 1. To determine the power n giving the best approximation 
to the test data Ud(y ) ,  plots of the form of figures 7(a) and 7(b)  were prepared. These 
show the ratios (respectively marked by +, 0 and 0 )  

' d  

( U y "  
for n = 1,3 and 5. 
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FIGURE 6(a). For caption see facing page. 

Figure 7(a )  (which relates to Case 20) shows that the differences among the best-fit 
results themselves are small, being typically less than 0.1 YO. The scatter of the data is 
greater, however, although it is here less than 1 YO. The curve that is shown gives the 
ratio Only at the edge of the core region do the best-fit values differ by as 
much as 0.15%. 

Figure 7(b) also presents data relating to Case 20, but now as seen from the belt. In 
this extreme example the velocities are only one-quarter to one-third of those measured 
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FIGURE 6. Profiles of velocities raised to the third power for the cases considered in figure 1, 
displaying a linear core region. For symbols, see table 1. 

from the fixed wall. Accordingly, the experimental scatter is now about 3 YO, and again 
greatly exceeds the differences between the best-fit results. 

We see that the scatter in the test values is sometimes in excess of 2 %, while the best- 
fit approximations generally deviate from one another by less than 1 %. These 
differences between best-fit approximations could be made even smaller by reducing 
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FIGURE 7. Comparison of best linear fits of the quantities defined in equation (13) us. distance y for 
n = 1 ,3 ,5  (+ , 0, 0 respectively): test data of Case 20 for the core region. (a) Seen from the fixed 
wall; (b)  seen from the moving belt. 
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Y ' d  

6 6.73 
9 7.10 

12 7.31 
15 7.58 
18 7.80 
21 7.97 
24 8.11 
27 8.27 
30 8.40 
33 8.54 

u/ ' d  

1.0783 
1.0423 
1.0319 
1.0140 
1.0037 
1.0003 
1.0006 
0.9986 
1.0001 
1.0005 

(U3)1/3/ Ud (U5)1/5/ Ud 

1.0565 1.0214 
1.0279 1.0061 
1.0228 1.0106 
1.0089 1.0024 
1.0013 0.9985 
0.9996 0.9989 
1.0010 1.0013 
0.9992 0.9997 
1.0004 1.0007 
0.9999 0.9994 

TABLE 2. Best-fit results for pure Couette flow (Case 18) for core region 21 < y ,< 33 mm 

the posited breadth of the core region. Hence it is quite impossible to decide whether 
test data in the core region are better approximated by the simple linear variation or 
by the cubic velocity variation indicated by the variational principle. 

5. Pure Couette flow 
Because of the theoretical importance of pure Couette flow, details will be given 

for Case 18, which is that with the highest Reynolds number, Re, = U,h/v = 18960, 
and with h = 33 mm, U, = +Ub = 8.54 m s-', = u*b = 0.363 m s-l. For the core 
region, 21 d y d 33 mm, the best linear fits of the test data (measured relative to the 
fixed wall) are 

U, = 6.971 +0.04767y, 

U:  = 301 +9.748y, 

U i  = 8691 + 1109~. 

- 

- 

- 

In table 2 these results are compared with test data. The comparison shows that the 
variations and go some way towards providing a smooth transition of the 
complete profile U ( y )  from the nearly linear core region to the logarithmic law of the 
wall. Still, in the core region itself, the formulae differ so little that it is hardly possible 
to prefer one to another. 

On the other hand, test results such as are considered here are usually presented, as 
in figure 8, in the form of plots of (U,- U ) / u ,  vs. (1 -y /h) .  To do this, the best-fit 
constants for the law of the wall were first determined for each test case, and thence 
the tangent of the law of the wall that leads to the zero of velocity at the wall. 
Obviously, this approximation is also quite adequate, for the accuracy of these 
measurements. Table 3 gives numerical details. 

6. Poiseuille-type or U-shaped velocity profiles 
When the belt moves in the direction opposite to blowing, there will exist an extreme 

value of velocity within the channel, either a maximum or minimum, depending on the 
coordinate system chosen. In the region of this extreme value we cannot expect to find 
a linear distribution of U 3 ( y ) ,  corresponding to I = 0 for the region. 

Consider two points, one on each of the logarithmic distributions that describe the 
velocity variations near the walls, at which the velocities are identical and at which the 
tangents are identical to those of the corresponding laws of the wall (or, in the situation 
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FIGURE 8. Another plot of the four cases of pure Couette flow: U, = centreplane velocity at 
y = h = half-channel width. u, is the constant friction velocity (see table 3). 

Case h (mm) U, (m s-l) U,h /v  u* (m s-') K C 
16 22 6.42 9 500 0.293 0.35 3.62 
17 22 4.27 12 640 0.378 0.37 4.62 
1 33 3.21 14260 0.282 0.40 5.65 

18 33 4.27 18960 0.363 0.38 5.46 

TABLE 3 .  Details of pure Couette flows of figure 8 
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For figure 9(a), Case 12 

- 0’4142 b.39 In 6. IdZf) + 5.91 at the fixed wall 
U, 12.84 

U, 12.84 
---[2.48ln( U - 0.88 8.8 (66 -y) )+5.55]-1 atthebelt 

U l  U,  = [a + /3y + yy2 + 8~’)~’’ in the core flow 

with a = 0.1203, /3 = 0.01546, y = -3.203 x lo-*, 8 = 3.170 x 

For figure 9(b), Case 14 

U, = =[2.491n(6.7:)+5.35] 8.59 at the fixed wall 

z-0-96’[2.3Sln( - 9.61 (66-y) )+6.6]-l atthebelt 
U, 8.59 

U /  U, = [a + /3y + yy2 + 8y3]113 in the core flow 

with a = 1.861, p = 0.2846, y = -6.541 x 8 = 3.125 x 

TABLE 4. Details for figures 9(a) and 9(b) (v = 0.1485 cm2 s-l; y in mm) 

considered here, the belt). For any two such points it is possible to find the four 
constants of equation (8) and thus to determine a smooth transition between the two 
wall layers. However, the choice which makes the integral I a minimum gives a velocity 
profile in the core region that deviates very little from the test data. Two comparisons 
of measurements with profiles calculated in this way are shown in figures 9 (a)  and 9 (b). 
The absolute values of the modelled and measured velocities differ by less than 1 %. 
The inset figures show how the maximum deviation depends on the location of the 
matching point. 

It is remarkable how closely the calculated polynomials (points marked 0) follow 
the wall laws even outside the core region. For details, see table 4. 

7. Pure Poiseuille flow 
For these cases - with the belt at rest - test accuracy is very high, say within 0.5 %. 

However, there is again a region where U( y )  and U3( y )  are both essentially linear, so 
that Z = 0 over the region. Figure 10 illustrates the fitting of the latter variation to two 
of these velocity variations. It should be realized that in this form of plot an uncertainty 
in U of 0.5% becomes one of 1.5%; this is illustrated for three points. 

Using also the logarithmic variations near the walls, we are able to describe the 
velocity profile almost completely. Only very near the centre of the channel does the 
velocity profile revert to a parabola, for which I > 0. Further measurements, preferably 
at higher Reynolds numbers, would provide here a more conclusive test of the 
principle. 

8. Concluding remarks 
A variational principle relating to the profile of mean velocity in free-turbulent flow 

has been confirmed using data describing a variety of unidirectional channel flows of 
Couette and Poiseuille types. This is, admittedly, only a mathematical experiment, 
since an intuitive or physically based explanation cannot be offered to support the 
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FIGURE 10. Profiles of velocity raised to the third power: pure Poiseuille flow, Cases 25 and 26. 

findings. However, the model derived from the variational principle has earlier been 
found to provide adequate representations of significant parts of the velocity variations 
in tube flow, in two-dimensional boundary layers, and in free jets. 

It is of interest to note another attempt to use a variational principle to determine 
flows subject to friction forces. Helmholtz (1868) introduced an intuitively very 
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attractive principle of minimum dissipation, for creeping flow at very small Reynolds 
number. For this case the Navier-Stokes equation reduces to 

- VP vrotrot V =  --. 
P 

Later, Lord Rayleigh (1913) remarked that this principle would be valid for any 
Reynolds number, provided only that the friction stress can be expressed as a potential 
function, P, say, that is, when rot"' V = 0. It is obvious that this condition is satisfied 
when P = constant or when P is a linear function of the spatial coordinates, as is the 
case in Poiseuille flow. However, it has been shown (Gortler & Wieghardt 1942), for 
two-dimensional flows at least, that in this case no further exact solution of the 
Navier-Stokes equations exists. 
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